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We study an SU(3) gauge theory with Nf = 8 degenerate flavors of light fermions in the funda-
mental representation. Using the domain wall fermion formulation, we investigate the light hadron
spectrum, chiral condensate

〈
ψψ
〉

and electroweak S parameter. We consider a range of light
fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approx-
imately match those from our previous studies of the two- and six-flavor systems. Our results for
the Nf = 8 spectrum suggest spontaneous chiral symmetry breaking, though fits to the fermion
mass dependence of spectral quantities do not strongly disfavor the hypothesis of mass-deformed
infrared conformality. Compared to Nf = 2 we observe a significant enhancement of

〈
ψψ
〉

relative
to the symmetry breaking scale F , similar to the situation for Nf = 6. The reduction of the S
parameter, related to parity doubling in the vector and axial-vector channels, is also comparable to
our six-flavor results.

PACS numbers: 11.10.Hi, 11.15.Ha, 11.25.Hf, 12.60.Nz, 11.30.Qc

I. INTRODUCTION

The discovery of a Higgs particle at the Large Hadron
Collider [1, 2] was a major step towards the longstand-
ing goal of determining the mechanism of electroweak
symmetry breaking. The properties of this particle are
so far consistent with the predictions of the standard
model [3, 4], but could also result from new strong dy-
namics at or above the TeV scale. Walking techni-
color theories, in which approximately conformal dynam-
ics produce a slowly-running gauge coupling and a large
mass anomalous dimension across a wide range of en-
ergy scales [5–7], are potential candidates to produce a
light composite Higgs boson [8]. Numerical lattice gauge
theory calculations are a crucial non-perturbative tool to
study such strongly-interacting gauge theories from first
principles. In this paper we present results from lattice
investigations of SU(3) gauge theory with Nf = 8 funda-
mental fermions, a candidate walking theory.

In SU(N) gauge theories with Nf massless fermions in
the fundamental representation, chiral symmetry breaks
spontaneously and the system confines if Nf is suffi-

ciently small. When Nf reaches a certain value N
(c)
f ,

with N
(c)
f < N

(AF )
f at which asymptotic freedom is

lost, the theory flows to a chirally symmetric conformal
fixed point in the infrared (IRFP) [9, 10]. The region

N
(c)
f ≤ Nf < N

(AF )
f is called the conformal window for

SU(N) with fundamental fermions. Around the upper

end of the conformal window, Nf . N
(AF )
f , the IRFP is

weakly coupled and can be investigated perturbatively.
The fixed point moves to stronger coupling as Nf de-
creases, motivating lattice studies of non-perturbative

conformal or near-conformal dynamics for Nf ∼ N (c)
f .

Many lattice calculations have been performed to

search for precise values of N
(c)
f , and more generally

to explore the range of possible phenomena in these
strongly-coupled gauge theories (cf. the recent review [11]
and references therein). For SU(3) gauge theories with
fundamental fermions, these studies have focused on
Nf = 6, 8, 10 and 12. Although the 6-flavor theory
exhibits interesting dynamical differences compared to
QCD [12–15], there is little doubt that it is chirally bro-
ken. Studies with larger Nf are less conclusive. Contin-

uum estimates that 8 . N
(c)
f . 12 [16–18] make these

difficult investigations particularly interesting.

For Nf = 8, several lattice studies [19–24] concluded
that the theory most likely undergoes spontaneous chi-
ral symmetry breaking. More recently, Refs. [25, 26] re-
ported that the 8-flavor system possesses a large effective
mass anomalous dimension across a wide range of energy
scales. The LatKMI Collaboration is investigating the
light meson spectrum of the theory [27], arguing that
at lighter fermion masses 0.015 ≤ m ≤ 0.04 the spec-
trum may be described by chiral perturbation theory,
while data at heavier 0.05 ≤ m ≤ 0.16 appear to exhibit
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some remnant of IR conformality despite chiral symme-
try breaking. They also find that the flavor-singlet scalar
Higgs particle can be as light as the pseudoscalar meson
(the would-be pion) throughout this range of m [28]. Pre-
liminary results from a large-scale USBSM project could
not clearly confirm spontaneous chiral symmetry break-
ing with fermion masses as light asm = 0.004 on a 483×96
lattice volume [29].

In contrast to the lattice studies summarized above,
which all employ staggered fermions, we investigateNf =
8 using the domain wall fermion formulation that pos-
sesses improved continuum-like chiral and flavor symme-
tries. This work is the latest addition to our extensive
investigations of SU(3) gauge theories with Nf = 2, 6, 8
and 10 flavors of degenerate domain wall fermions [12–
14, 30, 31]. Domain wall fermions are more computa-
tionally expensive than staggered fermions, which limits
the statistics we can obtain and is the reason we have
not yet determined the fermion-line-disconnected contri-
butions to flavor-singlet observables. In the next section
we summarize our 8-flavor simulations, which generate
ensembles of gauge configurations for a range of light
fermion masses on two lattice volumes, at a single gauge
coupling chosen so that IR scales approximately match
for all Nf .

We use these ensembles to investigate the light hadron
spectrum, chiral condensate

〈
ψψ
〉

and electroweak S pa-
rameter. Section III presents our spectrum analyses, first
reviewing the determination of hadron masses and decay
constants. Steady growth in the ratio of the vector meson
mass MV compared to the pseudoscalar mass MP as we
approach the chiral limit suggests that chiral symmetry
breaks spontaneously for Nf = 8. Although we find the
flavor non-singlet scalar meson to be heavy, Ma0 > MV ,
we have not yet determined the mass of the more inter-
esting flavor-singlet Higgs particle. When we confront
the fermion mass dependence of spectral quantities with
expressions motivated by either spontaneous chiral sym-
metry breaking or mass-deformed IR conformality, we
obtain comparable fit quality in each case.

In Section IV we explore the enhancement of
〈
ψψ
〉

relative to the symmetry breaking scale F , which is of
interest in the context of fermion mass generation. We
find a significant enhancement of the ratio

〈
ψψ
〉
/F 3 for

Nf = 8 compared to Nf = 2, similar to results we pre-
viously reported for Nf = 6 [12, 32]. Finally, we study
the electroweak S parameter in Section V, also discussing
the related issue of parity doubling in the vector (V ) and
axial-vector (A) channels. We follow the approach of
Ref. [13] to calculate S from the transverse V –A vac-
uum polarization function. At the range of masses we
can access on our lattice ensembles, we observe parity
doubling and a reduction in S that are also compara-
ble to six-flavor results from Ref. [13]. We summarize
our conclusions and prospects for further progress in Sec-
tion VI. The Appendix provides additional information
about thermalization, auto-correlations and the topolog-
ical charge.

II. SIMULATION DETAILS

A. Parameters and algorithms

Our calculations are performed with the domain wall
fermion (DWF) formulation [33, 34], where an auxil-
iary fifth dimension separates the left-handed and right-
handed chiralities. We thereby obtain good chiral sym-
metry even at non-zero lattice spacing, with only a small
chiral symmetry breaking effect quantified as the resid-
ual mass mres. With a non-zero input fermion mass mf ,
the effective fermion mass is m = mf +mres in the DWF
formulation.

Using the Iwasaki gauge action [35], we tune the bare
gauge coupling to β ≡ 6/g20 = 1.95 to obtain MV 0 ≈ 0.2
in lattice units, where MV 0 ≡ limm→0MV is the lin-
ear extrapolation of the vector meson mass to the chiral
limit [65]. This value of MV 0 approximately matches
those used in our 2- and 6-flavor investigations [12]
(cf. Table III), and is equivalent to having a relatively
large UV cutoff scale a−1 ≈ 5MV 0. If the theory is con-
fined and chirally broken, then MV 0 is related to the
confinement scale. Having a large ratio a−1/MV 0 helps
to separate the IR physics from the UV physics, par-
ticularly in a theory where the gauge coupling may be
running slowly.

We consider two lattice volumes, L3×T = 323×64
and 163×32, with parameters summarized in Table I.
The length of the fifth dimension is fixed to Ls = 16 for
both volumes. To check for possible thermalization or
poor sampling effects [30], we generate two independent
323×64 ensembles for each of the two lightest masses,
mf = 0.01 and 0.015, one starting from a random (dis-
ordered) gauge configuration, the other from an ordered
configuration. In all of our analyses we use a jackknife
procedure with 50-trajectory blocks to reduce the effects
of auto-correlations. The Appendix provides additional
information about auto-correlations and the thermaliza-
tion cuts listed in Table I. As discussed in the Appendix,
50-trajectory jackknife blocks may not remove all auto-
correlation effects, which could cause our statistical un-
certainties to be underestimated.

We generate gauge configurations using a Hybrid
Monte Carlo algorithm with Hasenbuch mass precondi-
tioning [36], in a style similar to Ref. [37]. For each
fermion determinant representing two degenerate fla-
vors, an intermediate mass mI is used to precondition
the input fermion mass mf and the Pauli–Villars mass
mPV = 1, resulting in a partition function of the form

Z[U ] =

∫
[dU ]

{
detD(mf )

detD(mI)

detD(mI)

detD(1)

}Nf/2

e−Sg[U ]

(1)
for Nf degenerate fermions. Here Sg[U ] is the gauge ac-
tion, D(m) ≡ D†(m)D(m) is the hermitian two-flavor
domain wall Dirac operator [38], and D(1) represents
the DWF Pauli–Villars field. We use intermediate mass
mI = 0.1 for all input mf , and fix the trajectory length



3

L3×T mf Start Traj. Therm. Blocks

0.010 dis 785 610 3

0.010 ord 2032 610 28

0.015 dis 1279 510 15

323×64 0.015 ord 1734 510 24

0.020 dis 1441 510 18

0.025 dis 1324 510 16

0.030 dis 1392 510 17

0.020 ord 6665 610 31

0.025 ord 2780 610 19

0.030 ord 2460 610 13

163×32 0.035 ord 2860 610 29

0.040 ord 2400 610 29

0.045 ord 2219 610 22

0.050 ord 4219 610 14

TABLE I. Simulation parameters, starting configuration and
total number of trajectories in each of our DWF ensembles.
All ensembles use gauge coupling β = 1.95 and Ls = 16 in
the fifth dimension. All our analyses use a jackknife procedure
with 50-trajectory blocks, so the number of blocks used for
each ensemble depends on the corresponding thermalization
cut.

to be τ = 1 molecular dynamics (MD) time unit. While
the intermediate mass term introduces additional pseud-
ofermion fields, it helps to reduce the overall fermion
force in the MD steps, making it possible to use larger
step sizes while maintaining a good acceptance rate [39].
Another reduction in computational cost comes from the
use of the chronological inverter [40]. To avoid the loss of
reversibility, we set stringent stopping conditions for the
conjugate gradient matrix inversion: 10−9 for the MD
evolution, and 10−10 for the Metropolis step.

B. Residual mass and renormalization constants

We calculate the residual mass following the standard
procedure described in great detail by Refs. [38, 41]. The
results from our 323×64 ensembles are recorded in Table II
and plotted in Figure 1. Defining mres in the limit mf →
0, we obtain mres = 0.002684(6) from a simple linear
extrapolation.

Table II also presents our 323×64 results for the DWF
axial-vector current renormalization constant ZA, deter-
mined from the procedure described in Ref. [38]. Our
analyses below involve both this renormalization con-
stant as well as the corresponding ZV for the vector
current. Because we define these renormalization con-
stants in the chiral limit m = mf + mres → 0, DWF
obey the chiral symmetry relation ZA = ZV up to lattice
discretization effects of O(a2). From a linear chiral ex-
trapolation we find ZA = 0.70011(8), which we will use
for both vector and axial-vector currents.

mf mres(mf )×103 ZA(mf )

0.010 2.860(4) 0.70146(7)

0.015 2.939(3) 0.70173(4)

0.020 3.014(5) 0.70221(6)

0.025 3.104(8) 0.70273(4)

0.030 3.210(6) 0.70324(5)

TABLE II. Residual mass and axial-vector current renormal-
ization constant as functions of the input mass mf from our
8-flavor 323×64 ensembles.

FIG. 1. Residual mass as a function of the input mass mf

from our 8-flavor 323× 64 ensembles, with linear mf → 0
extrapolation to determine mres = 0.002684(6). The line is
solid throughout the fit range 0.01 ≤ mf ≤ 0.03.

Table III summarizes our mres and ZA results for all
of Nf = 2, 6 and 8. Screening effects from the addi-
tional fermions require that we work at stronger gauge
couplings (smaller β) as Nf increases, in order to main-
tain comparable IR scales such as MV 0 and the chirally-
extrapolated baryon mass MN0. As a result, mres in-
creases by two orders of magnitude as we move from
Nf = 2 to Nf = 8, while ZA moves farther from unity.
Around β ≈ 1.75 our 8-flavor calculations encounter
a strong-coupling bulk phase transition that limits the
strength of the coupling we can explore with the Iwasaki
gauge action. Working with β = 1.95 safely on the weak-
coupling side of this transition results in an 8-flavor MV 0

somewhat smaller than the values we obtained forNf = 2
and 6.

We do not include the chirally-extrapolated pseu-
doscalar decay constant FP0 among the IR scales that
we attempt to match between systems with different
Nf . This is because FP is more sensitive to the form
of the extrapolation, and needs to be analyzed using
next-to-leading-order chiral perturbation theory (NLO
χPT). While we presented such an analysis for Nf = 2
in Ref. [12], we find that our 6- and 8-flavor data are not
within the radius of convergence of NLO χPT.
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Nf β mres×103 ZA MV 0 MN0

2 2.70 0.0263(1) 0.85042(8) 0.2166(27) 0.2984(64)

6 2.10 0.8278(22) 0.72615(7) 0.1991(33) 0.2425(95)

8 1.95 2.6836(58) 0.70011(8) 0.1710(29) 0.2441(43)

TABLE III. Nf dependence of the residual mass mres, the
axial-vector current renormalization constant ZA, and linear
chiral extrapolations of the vector meson and baryon masses,
MV 0 and MN0, respectively. Our results for Nf = 2 and 6
were first presented in Ref. [12].

III. LIGHT HADRON SPECTRUM

A. Meson masses and decay constants

Using the lattice ensembles discussed in the previous
section, we analyze the light hadron spectrum, focusing
especially on the pseudoscalar meson (P ), the vector me-
son (V ) and the axial-vector meson (A). In chirally bro-
ken systems, the pseudoscalar meson is a pseudo-Nambu–
Goldstone boson (PNGB), while the vector and axial-
vector mesons may become more degenerate for theories
near the conformal window. In addition we consider the
connected (flavor non-singlet) scalar meson (a0), and in
the next subsection we will study the lightest baryon (N).

We measure meson and baryon two-point correla-
tors every 10 MD trajectories with both point (p) and
Coulomb-gauge-fixed wall (w) sources, as well as p and
w sinks. Hence for each hadronic operator, we have four
different types of two-point correlator, denoted as Cwp,
Cww, Cpw and Cpp, where the subscripts indicate the
sink and source, respectively. To further increase statis-
tics we also use two different source locations, t0 = 0 and
t0 = T/2, where T is the temporal extent of the lattice.
In our analyses, we first average each correlator over the
two source locations and block every 50 MD trajectories.
We then perform a simultaneous jackknife fit of the four
averaged meson correlators to the form

C(t) = Tr

[〈∑
~x

ψ(~x, t)Γτaψ(~x, t)ψ(~0, 0)Γτaψ(~0, 0)

〉]
= A

[
e−Mt + e−M(T−t)

]
, (2)

where C(t) is projected to zero spatial momentum and
the trace is over flavor. (We normalize the flavor matrices
τa, a = 1, 2, 3 so that Tr

[
τaτ b

]
= 1

2δ
ab.)

For the pseudoscalar meson we can consider both Γ =
γ5 and Γ = γ4γ5, while Γ = I for the a0 scalar, Γ = γi for
the vector and Γ = γiγ5 for the axial-vector meson, with
i = 1, 2, 3. While each of the four source–sink combina-
tions has an independent amplitude A, the meson mass
M is a common parameter in the simultaneous fit, in a
way similar to Ref. [41]. Our limited statistics do not
allow us to calculate a correlation matrix between the
different source–sink combinations. Because the pseu-
doscalar meson couples to both the ψγ5ψ and ψγ4γ5ψ

channels, our fit provides a common mass and eight am-
plitudes. For the vector and axial-vector mesons, we first
average over the three polarizations i = 1, 2, 3 to form a
single correlator for each source–sink combination. Our
fits then provide a common mass and four amplitudes for
each of the vector and axial-vector states.

Since different source–sink combinations have different
excited-state contaminations, it is important to permit
an independent fit range for each correlator in the si-
multaneous fit. This allows us to make more efficient
use of the available data while still avoiding excited-
state effects. To set fit ranges, we inspect the effective
masses of the individual correlators to identify the onset
of plateaus. Since these bosonic correlators are symmet-
ric around the middle timeslice T/2 in the lattice, we
“fold” the correlators by averaging C(t) and C(T − t) for
t ≤ T/2. Some representative effective mass plots from
our 323×64 ensembles with mf = 0.015 (combining or-
dered and disordered starts) are shown in Figure 2. To
maintain some uniformity between different ensembles,
we attempt to choose fairly conservative fit ranges that
fall within plateaus for all mf . Table IV lists the result-
ing fit ranges used in our meson spectrum analyses.

Turning to the flavor non-singlet decay constants, we
define them through

〈0 |Aa4 |πa〉 = −iZA
√

2FPMP

〈0 |V ai | ρa〉 = −iZV
√

2FVMV εi (3)

〈0 |Aai | aa1〉 = −iZA
√

2FAMAεi

for the pseudoscalar, vector and axial-vector channels,
respectively. Here εi with i = 1, 2, 3 are polarization
vectors, while V aµ (x) = ψ(x)γµτ

aψ(x) and Aaµ(x) =

ψ(x)γµγ5τ
aψ(x) are the local (non-conserved) vector and

axial-vector currents. As discussed in the previous sec-
tion, we use ZA = 0.70011(8) for both the vector and
axial-vector current renormalization constants ZV and
ZA. The above definitions are consistent with the con-
ventions in Ref. [42], with normalization such that the
QCD pion decay constant is about 93 MeV.

The partially-conserved axial current (PCAC) relation
also allows us to determine the pseudoscalar decay con-
stant from the pseudoscalar matrix element [38]. For
DWF, the PCAC relation is

∂µAaµ(x) = 2(mf +mres)P
a(x), (4)

where Aaµ(x) is the (partially-)conserved axial-vector cur-

rent and P a(x) = ψ(x)γ5τ
aψ(x) is the local pseudoscalar

current. This allows us to replace the axial-vector matrix
element in Eq. (3) by the pseudoscalar matrix element,
giving

2(mf +mres)〈0 |P a|πa〉 = −i
√

2FPM
2
P . (5)

The amplitudes we obtain from the simultaneous fits al-
low us to determine the decay constants in several dif-
ferent ways. For each ensemble, we take the jackknife
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FIG. 2. Representative effective masses for the pseudoscalar meson (left) and vector meson (right), from our 323×64 ensembles
with mf = 0.015, combining ordered and disordered starts. The shaded bands show the fit ranges and the uncertainties of the
fit results. The red and blue regions in each band indicate the fit ranges for Cpp(t) and Cwp(t), respectively.

323×64 163×32

Operator mf = 0.010 0.015 0.020 0.025 0.030 All mf

ψγ5ψ Cww [16, 32] [16, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγ5ψ Cwp [16, 32] [16, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγ5ψ Cpp [16, 32] [20, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγ5ψ Cpw [16, 32] [16, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγ4γ5ψ Cww [16, 32] [16, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγ4γ5ψ Cwp [16, 32] [16, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγ4γ5ψ Cpp [16, 32] [20, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγ4γ5ψ Cpw [16, 32] [16, 32] [16, 32] [16, 32] [16, 32] [8, 16]

ψγiψ Cww [6, 32] [6, 32] [6, 32] [6, 22] [6, 22] [6, 16]

ψγiψ Cwp [6, 32] [6, 32] [6, 32] [12, 32] [12, 32] [6, 16]

ψγiψ Cpp [20, 32] [20, 32] [20, 32] [20, 32] [20, 32] [12, 16]

ψγiψ Cpw [6, 32] [6, 32] [6, 32] [6, 22] [6, 22] [6, 16]

ψγiγ5ψ Cww [10, 16] [5, 16] [10, 16] [5, 16] [5, 16] [10, 16]

ψγiγ5ψ Cwp [10, 22] [5, 16] [10, 22] [5, 16] [5, 16] [10, 16]

ψγiγ5ψ Cpp [16, 24] [20, 28] [16, 24] [20, 28] [20, 28] [12, 16]

ψγiγ5ψ Cpw [6, 16] [6, 16] [6, 16] [6, 16] [6, 16] [6, 16]

ψψ Cww [15, 20] [6, 16] [15, 20] [13, 20] [13, 25] [10, 16]

ψψ Cwp [15, 20] [6, 16] [15, 20] [13, 20] [13, 25] [10, 16]

ψψ Cpp [15, 25] [6, 16] [15, 25] [20, 25] [20, 25] [10, 16]

ψψ Cpw [15, 20] [6, 16] [15, 20] [13, 20] [13, 20] [10, 16]

TABLE IV. Fit ranges in t used to determine meson masses.

average of these different determinations as our final re-
sult.

As discussed in Section II, for mf = 0.01 and 0.015 we
generate separate 323×64 ensembles using either ordered
or disordered starting configurations, to check for pos-
sible bias from inadequate thermalization or from poor
sampling of the topological sectors. Table V compares
results for the meson masses and decay constants deter-
mined separately on these ordered- and disordered-start
ensembles. For both mf = 0.01 and 0.015, the separate
results are in good agreement. Therefore we combine the

two Markov chains to perform our final analysis. The fi-
nal fit results for the meson masses and decay constants
are shown in Table VI for the 323×64 ensembles, and in
Table VII for the 163×32 ensembles.

The good agreement between Nf = 8 results from or-
dered and disordered starts is in stark contrast to the 10-
flavor case [30], where we observed significant disagree-
ments that we attributed to frozen topological charges
Q. While the topological charges sampled by our 8-flavor
ensembles do not produce the desired gaussian distribu-
tions, Q tunnels frequently, as we show in the Appendix.
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mf Start MP MV MA FP FV FA

0.010 dis 0.1983(53) 0.2786(53) 0.3441(42) 0.0285(5) 0.0438(5) 0.0425(12)

0.010 ord 0.1844(17) 0.2659(16) 0.3403(52) 0.0299(6) 0.0456(7) 0.0422(12)

0.015 dis 0.2252(15) 0.3029(24) 0.4138(38) 0.0360(9) 0.0486(11) 0.0421(10)

0.015 ord 0.2251(10) 0.2964(16) 0.3915(29) 0.0365(8) 0.0466(6) 0.0400(13)

TABLE V. Comparison of meson masses and decay constants from 323×64 ensembles with different starting configurations.

This tunneling appears sufficient to eliminate the system-
atic discrepancy introduced when the topological charge
is completely frozen.

B. Baryon mass

The zero-momentum projected two-point baryon cor-
relator is

B(t) =
∑
~x

〈
N(~x, t)N†(~0, 0)

〉
, (6)

where the interpolating operator N(x) is

N(x) = εijk
[
ψTi (x)Cγ5ψj(x)

]
ψk(x). (7)

In the above equation i, j, k = 1, 2, 3 are color indices and
C is the charge conjugation operator. The fermion fields
ψa(x) have anti-periodic boundary conditions in the time
direction. If we define the parity projection operators
P± = (1± γ4)/2, then on a lattice with temporal extent
T , the large-t behavior of B(t) can be written as

P+B(t) = ANe
−MN t −AN∗e−MN∗ (T−t)

P−B(t) = −AN∗e−MN∗ t +ANe
−MN (T−t),

(8)

where N and N∗ represent the ground states of the
baryon and of its parity partner.

For each two-point correlator measurement, we average
the positive- and negative-parity-projected correlators to
define

BN (t) = [P+B(t) + P−B(T − t)]/2. (9)

When t � T , the averaged correlator takes the simple
exponential form

BN (t) ≈ ANe−MN t, (10)

and we use single-exponential fits to determine the
baryon mass MN . By considering (T − t) � T , one
would obtain the mass of the baryon’s parity partner N∗.
However, we could not reliably determine MN∗ from our
current data, and only report results for MN . We also
present results only from our 323×64 ensembles, since
the temporal extent of the 163×32 lattices is not large
enough to provide reliable plateaus.

We consider only wall sources with point sinks to deter-
mine the baryon mass, as this source–sink combination

provides the best signal-to-noise ratio. As in the analysis
for the mesons, we average over the two source locations
and block every 50 MD trajectories. Figure 3 presents
two representative sets of effective mass results (for our
323×64 ensembles with mf = 0.01 and 0.015, combining
ordered and disordered starts), which show that the ap-
proach to a plateau varies significantly for different mf .
We choose fit ranges in t by requiring that the fit re-
sults do not change beyond statistical uncertainties upon
dropping the first or last points. These fit ranges, and
the corresponding baryon mass results, are tabulated in
Table VIII. As for our meson spectrum results, we find
good agreement betweenMN computed separately on the
ordered- and disordered-start ensembles, which we com-
bine to determine the final results for mf = 0.01 and
0.015.

FIG. 3. Representative baryon effective masses from our 323×
64 ensembles with mf = 0.01 and 0.015, combining ordered
and disordered starts while considering only wall sources and
point sinks. The shaded bands indicate the fit ranges and the
uncertainties of the fit results.

In Figure 4 we plot our baryon mass results as func-
tions of m = mf +mres for all of our investigations with
Nf = 2, 6 and 8. Via the Feynman–Hellmann theorem,
the m-dependence of MN is related to the baryon σB
term [43, 44]

MN

∑
ψ

f
(B)
ψ = σB =

〈
B|mψψ|B

〉
= m

∂MN

∂m
. (11)

Estimating ∂MN

∂m as the slope of MN vs. m, we find that
the 6- and 8-flavor slopes agree within uncertainties, and
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mf MP MV MA Ma0 FP FV FA

0.010 0.1853(17) 0.2664(16) 0.3411(51) 0.296(9) 0.0297(5) 0.0453(6) 0.0425(12)

0.015 0.2252(8) 0.2990(14) 0.3999(30) 0.381(6) 0.0364(5) 0.0474(6) 0.0421(10)

0.020 0.2582(11) 0.3363(22) 0.4414(82) 0.471(26) 0.0395(6) 0.0495(7) 0.0425(17)

0.025 0.2949(9) 0.3759(30) 0.5052(39) 0.474(14) 0.0456(7) 0.0541(11) 0.0427(26)

0.030 0.3280(10) 0.4131(28) 0.5502(30) 0.518(21) 0.0504(10) 0.0586(13) 0.0493(34)

TABLE VI. Results for meson masses and decay constants from 323×64 ensembles.

mf MP MV MA Ma0 FP FV FA

0.020 0.3725(66) 0.4676(104) 0.4826(146) 0.383(5) 0.0305(5) 0.0722(23) 0.0647(35)

0.025 0.3880(66) 0.4853(32) 0.5171(69) 0.423(6) 0.0378(10) 0.0745(13) 0.0683(18)

0.030 0.3957(65) 0.4865(101) 0.5113(245) 0.439(19) 0.0459(11) 0.0775(23) 0.0599(48)

0.035 0.3930(54) 0.5014(51) 0.5962(145) 0.497(12) 0.0536(12) 0.0779(13) 0.0662(42)

0.040 0.4120(32) 0.5244(58) 0.6215(216) 0.559(25) 0.0590(11) 0.0801(13) 0.0613(50)

0.045 0.4373(25) 0.5502(51) 0.7531(313) 0.678(52) 0.0641(10) 0.0852(18) 0.0873(89)

0.050 0.4544(42) 0.5568(43) 0.7158(763) 0.609(40) 0.0661(9) 0.0829(21) 0.0678(23)

TABLE VII. Results for meson masses and decay constants from 163×32 ensembles.

mf Fit range MN dis ord

0.010 10 ≤ t ≤ 24 0.3905(26) 0.4009(81) 0.3898(27)

0.015 20 ≤ t ≤ 30 0.4446(31) 0.4456(46) 0.4436(47)

0.020 15 ≤ t ≤ 24 0.4962(33) — —

0.025 16 ≤ t ≤ 30 0.5590(40) — —

0.030 16 ≤ t ≤ 30 0.6189(33) — —

TABLE VIII. Fit ranges and results for the baryon mass from
323×64 ensembles.

both are twice as large as the result for Nf = 2. In terms

of the dimensionless σB

MN
= m

MN

∂MN

∂m , we find 0.16 .
σB

MN
. 0.37 forNf = 2, 0.35 . σB

MN
. 0.58 forNf = 6 and

0.37 . σB

MN
. 0.60 for Nf = 8, with 0.01 ≤ mf ≤ 0.03 in

each case.

C. Chiral symmetry breaking

We begin our discussion of the spectrum results by
considering the Edinburgh-style plot in Figure 5, which
presents the ratios MN/FP vs. MP /FP for all of our in-
vestigations with Nf = 2, 6 and 8. For each Nf we
analyze 323×64 lattice ensembles with the same five in-
put fermion masses 0.01 ≤ mf ≤ 0.03. These correspond
to 4.4 . MPL . 7.8 for Nf = 2, 5.4 . MPL . 9.7 for
Nf = 6 and 5.9 .MPL . 10.5 for Nf = 8. The ratios in
Figure 5 are designed to exaggerate finite-volume effects,
which we expect to increase the masses while decreasing
FP , pushing the points up and to the right. Our results
do not show this behavior for any Nf . The 2-flavor ra-
tios move steadily to the left, as we would expect from
spontaneous chiral symmetry breaking: the pseudoscalar
becomes a massless NGB in the chiral limit, while FP

FIG. 4. Baryon mass MN plotted against m = mf +mres for
Nf = 2, 6 and 8, each with 0.01 ≤ mf ≤ 0.03 on 323×64
lattices. Lines connect points to guide the eye.

and MN remain non-zero. Although the 6-flavor results
also move to the left, they do not move as much as do
those for Nf = 2, and the 8-flavor points cluster in a
small region of the plot. The lightest point for Nf = 8
may hint at the onset of finite-volume effects, but such
effects are not yet significant in these ratios. In addition
to providing evidence that finite-volume effects are un-
der control, Figure 5 illustrates some of the differences
between the three systems with Nf = 2, 6 and 8.

The ratios MV /MP and Ma0/MP provide similar illus-
trations, which we consider in Figure 6. These quantities
diverge in the chiral limit for chirally broken systems in
which MP → 0 while MV and Ma0 remain non-zero. Fig-
ure 6 again compares Nf = 8 with our earlier results for
Nf = 2 and 6, considering the same 0.01 ≤ mf ≤ 0.03
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FIG. 5. Edinburgh-style plot ofMN/FP vs.MP /FP , forNf =
2, 6 and 8, each with 0.01 ≤ mf ≤ 0.03 on 323×64 lattices.
Lines connect points to guide the eye, and arrows indicate the
direction of decreasing masses. Our results for Nf = 2 and 6
were first presented in Ref. [12].

on 323×64 lattices but now plotting vs. M2
P /M

2
V 0. The

2-flavor results for MV /MP increase rapidly, as we ex-
pect for a chirally broken theory with non-zero fermion
mass. While this ratio does not grow so dramatically for
Nf = 6 and 8, both show similar monotonic increases as
MP decreases, suggesting spontaneous chiral symmetry
breaking. The 2-flavor results for the ratio Ma0/MP are
qualitatively similar, though the uncertainties are signif-
icantly larger. (We could not reliably determine Ma0 for
Nf = 2 with mf = 0.02, for which M2

P /M
2
V 0 ≈ 0.87.)

The 6- and 8-flavor results for Ma0/MP are roughly con-
stant within uncertainties. This behavior may be related
to parity doubling, an issue we will discuss further in the
context of the electroweak S parameter in Section V B.

Although we find the a0 mass to be larger than the
TeV-scale MV in the absence of finite-volume effects,
this has no direct implications for the mass of the flavor-
singlet scalar Higgs particle. The flavor-singlet state is
sensitive to fermion-line-disconnected contributions that
are extremely expensive to compute, especially in the
DWF formulation. These disconnected contributions ap-
pear crucial to the LatKMI Collaboration’s observation
of a flavor-singlet scalar roughly degenerate with the
pseudoscalar for MP & 0.18 [28]. As an alternative ap-
proach, we have explored gluonic operators that also cou-
ple to the scalar channel. Our preliminary results sug-
gest that our ensembles do not possess sufficient statis-
tics to permit robust glueball analyses, another conse-
quence of working with expensive DWF. Because it is so
important to determine whether the observed 125 GeV
Higgs is consistent with new strong dynamics, in the fu-
ture we plan to explore disconnected DWF calculations,
to judge whether the available computational resources
would provide reliable results.

If chiral symmetry does break spontaneously in the

8-flavor system, as Figure 6 suggests, then leading-
order χPT predicts that at non-zero m the PNGB mass
squared is M2

P ∝ m. The other masses and decay con-
stants should be well modeled by a constant plus a term
linear in m. We are not working at light enough masses
to expect to resolve chiral logarithms. We therefore fur-
ther explore the hypothesis of spontaneous chiral symme-
try breaking by considering fits to the following simple
forms:

M2
P = C

(P )
0 + C

(P )
1 m

MV,A,a0,N = C
(V,A,a0,N)
0 + C

(V,A,a0,N)
1 m (12)

FP,V,A = D
(P,V,A)
0 +D

(P,V,A)
1 m.

These fits are shown in Figure 7. Their quality varies
significantly depending on the observable considered, as
indicated by the values 1 . χ2/d.o.f. . 10 in the second
column of Table IX.

The third, fourth and fifth columns of Table IX explore
the fit-range dependence of these chiral extrapolations,
by omitting the lightest point mf = 0.01, the heaviest
point mf = 0.03, and both of these points, respectively.
Most quantities show relatively little sensitivity to the
fit range, with the different intercepts agreeing within
statistical uncertainties. There is also no significant sys-
tematic trend in the χ2/d.o.f. values as data points are
omitted from the fits. The significantly non-zero inter-
cepts (and large χ2/d.o.f.) we find for the pseudoscalar
mass squared indicate that our results are not well de-
scribed by leading-order χPT, M2

P ∝ m.

D. Conformal hypothesis

Even though Figure 6 suggests that the 8-flavor sys-
tem exhibits spontaneous chiral symmetry breaking, it
is still worthwhile to consider the alternate hypothesis
that the theory is IR conformal in the infinite-volume
chiral continuum limit. If this were the case, then the
introduction of a non-zero fermion mass m would pro-
duce bound states with non-zero masses M governed
by the mass anomalous dimension γ?m at the IR fixed
point [45, 46]. At leading order, all hadron masses (and
decay constants [47]) should scale as a power law with
the same exponent,

MX = CXm
1/(1+γ?

m)

FX = DXm
1/(1+γ?

m).
(13)

Lattice calculations further break conformal symmetry
through the introduction of a finite volume and finite
UV cut-off (inverse lattice spacing) [48–50], leading to
effects that we will not address in this work.

As in the previous subsection, we consider the simplest
possible fits motivated by the IR-conformal hypothesis,
to the power-law forms in Eq. (13). Figure 8 shows the
results, which correspond to the γ?m and χ2/d.o.f. listed
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FIG. 6. MV /MP (left) and Ma0/MP (right) plotted against M2
P /M

2
V 0 for Nf = 2, 6 and 8, each with 0.01 ≤ mf ≤ 0.03 on

323×64 lattices. Lines connect points to guide the eye. Our MP and MV results for Nf = 2 and 6 were first presented in
Ref. [12].

FIG. 7. Fits of our 323×64 results for hadron masses (left) and decay constants (right) to the forms in Eq. (12) motivated by
spontaneous chiral symmetry breaking. The lines are solid throughout the fit range 0.01 ≤ mf ≤ 0.03.

0.01 ≤ mf ≤ 0.03 0.01 ≤ mf ≤ 0.025 0.015 ≤ mf ≤ 0.03 0.015 ≤ mf ≤ 0.025

Observable d.o.f. = 3 d.o.f. = 2 d.o.f. = 2 d.o.f. = 1

M2
P -0.0138(8) 12 -0.0113(10) 7.5 -0.0160(10) 11 -0.0131(13) 10

MV 0.1710(29) 1.6 0.1735(37) 1.9 0.1640(43) 0.1 0.1777(46) 1.5

MA 0.2157(58) 1.4 0.2081(81) 1.2 0.2213(73) 1.3 0.2139(108) 1.7

Ma0 0.1702(168) 3.7 0.1550(200) 4.3 0.2162(232) 1.2 0.2104(297) 2.3

MN 0.2441(43) 1.6 0.2496(56) 1.2 0.2353(74) 1.3 0.2425(112) 1.8

FP 0.0174(9) 2.5 0.0174(11) 3.7 0.0193(15) 2.5 0.0202(19) 4.3

FV 0.0370(11) 2.0 0.0383(13) 1.4 0.0345(18) 1.5 0.0363(24) 1.7

FA 0.0399(24) 1.0 0.0423(28) 0.05 0.0367(38) 0.9 0.0408(24) 0.002

TABLE IX. Intercepts and χ2/d.o.f. for linear chiral extrapolations of the spectrum data in Tables VI and VIII, using the
forms in Eq. (12) motivated by spontaneous chiral symmetry breaking and considering several different fit ranges. The large
χ2/d.o.f. and non-zero intercepts for the pseudoscalar mass squared indicate that our results are not well described by leading-
order χPT, M2

P ∝ m.
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in the second column of Table X. Attempts to fit the
axial-vector decay constant FA to a power-law do not
succeed, and we omit this observable from the figure and
table. The vector decay constant FV also leads to un-
physically large γ?m > 2; the tension between the data
and the power-law fit form can be seen in the right panel
of Figure 8.

In Table X we see that the quality of the other power-
law fits is comparable to that of the corresponding linear
fits considered in the previous subsection, with a similar
range of 1 . χ2/d.o.f. . 10. Not surprisingly, the ob-
servables with larger χ2/d.o.f. from power-law fits tend
to produce smaller χ2/d.o.f. from linear fits. Omitting
the lightest point mf = 0.01 from the power-law fits re-
duces χ2/d.o.f. for some, but not all, of the observables.

More significantly, the predicted mass anomalous di-
mension varies over a wide range 0.6 . γ?m . 1.1 de-
pending on the observable. While this would suggest
that the conformal hypothesis breaks down when con-
fronted with our data, we also see that for most observ-
ables γ?m shows significant sensitivity to the fit range.
Taking into account the ∼ 20% systematic uncertainties
suggested by this sensitivity removes much of the ten-
sion between different observables, especially given our
limited data and the other neglected systematic effects
mentioned above. While these results do not support the
hypothesis of mass-deformed infrared conformality, nei-
ther do they strongly disfavor it. The most reliable con-
clusion we can make is that if the 8-flavor theory were IR
conformal, then it would possess a relatively large mass
anomalous dimension 0.6 . γ?m . 1.1.

We can attempt to test these power-law fit results by
checking their consistency with finite-size scaling. Con-
sidering a mass-deformed IR-conformal theory in a fi-
nite spatial volume L3, finite-size scaling states that
the hadron masses MH depend on the scaling variable
x ≡ Lm1/(1+γm), as

MH = L−1fH(x). (14)

As above, we are neglecting several potential complica-
tions [49, 50], so we will not require that our data for
different observables all scale with the same fixed γ?m.
In Figure 9 we plot our 163×32 and 323×64 results for
LMA, LMV and LMP as functions of x. Because there
is little or no overlap between the data sets from our two
different volumes, we cannot use standard finite-size scal-
ing techniques [51, 52] to obtain additional estimates for
the mass anomalous dimension. Instead, we simply use
the γm values from Table X as input, and observe that
the 163×32 points appear to form reasonably continu-
ous extensions of the 323×64 data that produced these
predictions through the power-law fits discussed above.

IV. CHIRAL CONDENSATE ENHANCEMENT

In composite Higgs models, the chiral condensate
〈
ψψ
〉

plays the role of the Higgs vacuum expectation value,

generating masses for the standard model fermions f
through dimension-six interactions of the form ψψff .
Similar dimension-six couplings f ifif jfj generate flavor-
changing neutral currents subject to stringent experimen-
tal constraints [53]. A generic way to satisfy these con-
straints is for the value of

〈
ψψ
〉

to be large compared to
the symmetry breaking scale F . Such condensate en-
hancement is conjectured to occur for chirally broken
theories near the conformal window [5–7]. In this sec-
tion we investigate the dimensionless ratio

〈
ψψ
〉
/F 3 for

Nf = 8, comparing this system with our previous results
for Nf = 2 and 6 [12, 32].

From the leading-order χPT expression

M2
PF

2
P = 2m

〈
ψψ
〉
m

(15)

(the Gell-Mann–Oakes–Renner relation), we can identify
three observables that reduce to

〈
ψψ
〉
/F 3 in the chiral

limit:

X(CF ) =

〈
ψψ
〉
m

F 3
P

X(CM) =
(M2

P /2m)3/2〈
ψψ
〉1/2
m

(16)

X(FM) =
M2
P

2mFP
.

The subscript on
〈
ψψ
〉
m

indicates that this quantity (like

MP and FP ) is evaluated at non-zero fermion mass m,
in contrast to the chiral-limit values

〈
ψψ
〉

and F . We
discussed MP and FP at length in the Section III, and
Table XI presents our results for

〈
ψψ
〉
m

(see also Figs. 14

and 16 in the Appendix). Because we measure
〈
ψψ
〉
m

di-
rectly, these data are dominated by a UV-divergent term
∝ m/a2. As a consequence, the three ratios in Eq. (16)
have significantly different values in the range of m we
can access on 323×64 lattices.

Following Refs. [12, 32] we proceed by comparing each〈
ψψ
〉
/F 3 observable in Eq. (16) with the corresponding

2-flavor quantity, considering the ratios

R
(IJ)
8 =

X(IJ)(Nf = 8)

X(IJ)(Nf = 2)
, (17)

where (IJ) enumerates the three constructions (CF ),
(CM) and (FM). We take the ratio of 8- and 2-flavor
results evaluated with the same input mass mf . How-
ever, these systems have significantly different residual
masses (Table III), which lead to different mNf=2 and

mNf=8 in X(CM) and X(FM). We plot all three ratios

R
(IJ)
8 in the right panel of Figure 10, using the geometric

mean m̃ =
√
mNf=2mNf=8 on the horizontal axis. The

left panel presents our previous results for R
(IJ)
6 from

Ref. [32].
The two plots in Figure 10 are remarkably similar, in-

dicating that the chiral condensate enhancement we ob-
serve for Nf = 8 is barely larger than what we found
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FIG. 8. Fits of our 323×64 results for hadron masses (left) and decay constants (right) to the power-law forms in Eq. (13)
motivated by mass-deformed IR conformality. The lines are solid throughout the fit range 0.01 ≤ mf ≤ 0.03.

0.01 ≤ mf ≤ 0.03 0.01 ≤ mf ≤ 0.025 0.015 ≤ mf ≤ 0.03 0.015 ≤ mf ≤ 0.025

Observable d.o.f. = 3 d.o.f. = 2 d.o.f. = 2 d.o.f. = 1

MP 0.64(2) 3.9 0.67(2) 3.7 0.63(2) 5.0 0.66(3) 6.8

MV 1.14(4) 14 1.31(6) 11 0.91(5) 1.6 0.99(8) 1.3

MA 0.94(5) 1.2 0.97(7) 1.7 0.91(5) 1.4 0.92(9) 2.7

Ma0 0.74(13) 2.1 0.67(14) 2.8 1.00(22) 1.0 0.98(29) 2.0

MN 1.04(4) 12 1.22(6) 6.6 0.83(5) 4.7 0.97(9) 4.3

FP 0.86(8) 2.5 0.92(10) 3.2 0.88(13) 3.8 1.03(19) 5.9

FV 3.20(40) 4.4 4.07(69) 2.6 2.12(35) 2.5 2.75(69) 2.4

TABLE X. Mass anomalous dimension γ?
m and χ2/d.o.f. from power-law chiral extrapolations of the spectrum data in Tables VI

and VIII, using the forms in Eq. (13) motivated by mass-deformed IR conformality and considering several different fit ranges.

〈
ψψ
〉
m

mf 163×32 323×64

0.010 — 0.015460(14)

0.015 — 0.021645(20)

0.020 0.027023(21) 0.027724(14)

0.025 0.033072(45) 0.033742(19)

0.030 0.039124(59) 0.039697(8)

0.035 0.045327(49) —

0.040 0.051396(34) —

0.045 0.057279(47) —

0.050 0.063092(53) —

TABLE XI. Results for direct measurements of the chiral con-
densate

〈
ψψ
〉
m

from 163×32 and 323×64 ensembles, using
the same normalization as in Refs. [12, 32].

for Nf = 6. In particular, the most stable ratio R(FM),

which does not involve our direct
〈
ψψ
〉
m

measurements,
increases by only a few percent for R8 compared to R6.
Even so,

〈
ψψ
〉
/F 3 is significantly enhanced for the 8-

flavor theory compared to Nf = 2. Based on the 6-
flavor joint chiral extrapolation inspired by NLO χPT in
Ref. [32], we obtain the unrenormalized ratio R8(Λ) ≈ 2

in the m̃ → 0 chiral limit, with roughly 10% statistical
uncertainty.

V. ELECTROWEAK S-PARAMETER

In this section we consider the electroweak S parame-
ter [42], following the approach of Ref. [13]. The S pa-
rameter remains one of the most important experimental
constraints on electroweak symmetry breaking through
new strong dynamics. S is defined to vanish for the stan-
dard model, and its experimental value S = 0.03(10) is
consistent with zero [54]. Simply scaling up 2-flavor QCD
data to the electroweak scale (and imposing the Higgs
mass MH = 125 GeV) would predict S ≈ 0.43, providing
strong evidence that QCD-like technicolor theories are
ruled out.

In order to use a many-flavor gauge theory, such as
the Nf = 8 system under consideration, as the basis of a
composite Higgs model, the S parameter must be signifi-
cantly reduced compared to scaled-up QCD. In Ref. [13]
we observed such a reduction for Nf = 6 compared to 2-
flavor results, which decreases but does not eliminate the
tension with experiment. Here we repeat this analysis
for Nf = 8, finding similar results. We also explore the
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FIG. 9. Testing the consistency of the mass anomalous dimensions γm predicted by power-law fits to 323×64 data (Table X)
with finite-size scaling. Filled points are from 323×64 lattices, while empty points are from 163×32. The plot on the left
retains all five 323×64 points with 0.01 ≤ mf ≤ 0.03, while that on the right includes only the four heavier points and uses the
corresponding γm from Table X.

FIG. 10. Ratios R
(IJ)
Nf

of the three observables X(IJ) in Eq. (16) that reduce to
〈
ψψ
〉
/F 3 in the chiral limit, for Nf = 6

normalized by Nf = 2 (left) and Nf = 8/Nf = 2 (right). The horizontal axis is the geometric mean m̃ =
√
mNf=2mNf=6,8.

related issue of parity doubling in the vector and axial-
vector channels.

A. Direct analysis of vacuum polarization

The S parameter is given by

S = 4πND
d

dQ2
ΠV−A(Q2)

∣∣∣∣
Q2=0

−∆SSM , (18)

where ND is the number of fermion doublets to which
we choose to give chiral electroweak couplings. Here we
fix ND = 1. ΠV−A(Q2) is the transverse component of
the difference between vector (V ) and axial-vector (A)
vacuum polarization tensors, as a function of euclidean
Q2 ≥ 0. Since our domain wall fermion action ensures
ZV ≈ ZA, it is straightforward to compute ΠV−A(Q2).
These renormalization constants appear since we con-
sider one conserved DWF current and one local current

in each correlator [55]. As first reported by Ref. [56], the
use of a single conserved DWF current suffices to ensure
that lattice artifacts cancel in the V –A difference. (Such
cancellations appear to result from V and A lattice cur-
rents forming an exact multiplet under chiral rotations,
which is also a feature of the local overlap currents used
by Ref. [57].) Combining one conserved current with a
local current reduces computational costs by roughly a
factor of Ls = 16 compared to using conserved DWF
currents exclusively.

To determine Π′(0) ≡ d
dQ2 Π(Q2)

∣∣∣
Q2=0

, we fit our data

for ΠV−A(Q2) to a four-parameter Padé-type rational
function of the form

Π(Q2) =
a0 + a1Q

2

1 + b1Q2 + b2Q4
=

∑1
m=0 amQ

2m

1 +
∑2
n=1 bnQ

2n
. (19)

The quadratic-in-Q2 denominator in this expression
is motivated as a generalization of the single-pole-
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dominance approximation

ΠV−A(Q2) ≈ −F 2
P +

Q2F 2
V

M2
V +Q2

− Q2F 2
A

M2
A +Q2

. (20)

Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q2-dependence of vacuum polarization functions.

Finally, the subtraction of ∆SSM in Eq. (18) removes
from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take

∆SSM =
1

4

∫ ∞
4M2

P

ds

s

[
1−

(
1− M2

V 0

s

)3

Θ(s−M2
V 0)

]

− 1

12π
log

(
M2
V 0

M2
H

)
. (21)

The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].

Computing S for fixed m from Eqs. 18 and 21, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 11.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ∼ 1000 GeV. As in pre-
vious sections, we plot S vs. M2

P /M
2
V 0 in order to provide

a more direct comparison between the three different the-
ories.

The S parameter is only well defined in the chiral limit
M2
P /M

2
V 0 → 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N2
f −1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N2
f − 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV
Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

For Nf = 2 this requirement simply reduces to the
linear M2

P /M
2
V 0 → 0 extrapolation shown in Figure 11,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ≈ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log
(
M2
V 0/M

2
P

)
. The blue band in Figure 11 fits the three

Nf = 6 data points with the smallest M2
P /M

2
V 0 . 1 to

the corresponding chiral form [55]. In a realistic con-
text, the N2

f −4 PNGBs remain massive, due to standard

FIG. 11. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (18). Our results for Nf = 2 and
6 were previously published in Refs. [13, 55].

model and other interactions, which break this degener-
acy.

For Nf = 8, we cannot access M2
P /M

2
V 0 < 1 on 323×64

lattice volumes, making this sort of chiral fit unreason-
able. Even so, in Figure 11 we can observe the beginning
of a similar reduction in our 8-flavor results for S. The
Edinburgh-style plot in Figure 5 suggests that these re-
sults should be safe from finite-volume distortions. (The
lightest Nf = 2 and Nf = 6 points in Figure 11 use
mf = 0.005 and are omitted from Figure 5; finite-volume
effects may be significant for this 6-flavor point.) Because
Nf = 8 is closer to the conformal window, we would ex-
pect this reduction to end up more significant than that
for Nf = 6 at smaller M2

P /M
2
V 0, but this cannot be de-

termined from our current lattice results.

B. Vector and axial-vector parity doubling

The expected decrease in the S parameter for systems
near the conformal window is related to the onset of par-
ity doubling between the vector and axial-vector chan-
nels. This can be seen in Eq. (20), which follows from
the dispersion relation

ΠV−A(Q2) =
Q2

12π

∫ ∞
0

ds

π

[
RV (s)−RA(s)

s+Q2

]
−F 2

P , (22)

upon approximating each spectral function R(s) by a sin-
gle pole,

RV (s) ≈ 12π2F 2
V δ(s−M2

V )

RA(s) ≈ 12π2F 2
Aδ(s−M2

A).
(23)

Parity doubling in this context amounts to the statement
that RV (s) ≈ RA(s), so that Π′V−A(0) ≈ 0.
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Instead of attempting to reconstruct the full spectral
functions RV (s) and RA(s), we focus on the lightest vec-
tor and axial-vector states discussed in Section III. From
the single-pole approximation in Eq. (23), we see that
in addition to roughly degenerate masses MV ≈ MA,
parity doubling also requires approximately equal decay
constants FV ≈ FA. In Figure 12 we plot the ratios
MA/MV and FV /FA for Nf = 2, 6 and 8, again as func-
tions ofM2

P /M
2
V 0. Comparing these plots with Figure 11,

we see that reductions in our direct measurements of the
electroweak S parameter are indeed associated with in-
creased parity doubling. Both the 6- and 8-flavor ratios
tend to be smaller than the Nf = 2 results at compa-
rable M2

P /M
2
V 0, with their smallest values corresponding

to the points at which S decreases.

VI. CONCLUSION

We have presented results from lattice investigations
of SU(3) gauge theory with Nf = 8 degenerate do-
main wall fermions in the fundamental representation.
With ensembles of gauge configurations covering a range
of fermion masses on two lattice volumes 323×64 and
163×32 at a single gauge coupling β = 1.95, we studied
the light hadron spectrum, chiral condensate

〈
ψψ
〉

and
electroweak S parameter. We tuned β to approximately
match IR scales with those from our previous studies of
Nf = 2 and 6. The resulting coupling β = 1.95 leads to
a relatively large residual mass mres = 0.002684(6) with
Ls = 16.

At this gauge coupling, our 323× 64 lattices appear
to be large enough to keep finite-volume effects under
control for input fermion masses mf ≥ 0.01, as illus-
trated by the Edinburgh-style plot in Figure 5. The ra-
tio MV /MP steadily increases as we approach the chiral
limit, suggesting spontaneous chiral symmetry breaking.
Simple linear chiral extrapolations of our spectrum re-
sults, motivated by the hypothesis of spontaneous chi-
ral symmetry breaking, tend to be of reasonable quality.
The main exception is the pseudoscalar mass squared, for
which a large χ2/d.o.f. and significantly non-zero chiral-
limit value indicate tension with leading-order χPT. Con-
sidering the possibility that the 8-flavor theory is IR
conformal, we find that power-law chiral extrapolations
motivated by the hypothesis of mass-deformed IR con-
formality are of comparable quality. These power-law
fits predict a relatively large mass anomalous dimension
0.6 . γ?m . 1.1.

To explore chiral condensate enhancement, we studied
three observables that reduce to

〈
ψψ
〉
/F 3 in the chiral

limit. Compared to Nf = 2, our 8-flavor results indicate

a significant enhancement of
〈
ψψ
〉
/F 3, with an unrenor-

malized Nf = 8/Nf = 2 ratio R8(Λ) ≈ 2 in the chiral
limit. Our results for the 8-flavor condensate enhance-
ment are remarkably similar to our previous findings for
Nf = 6 [32]. For the Nf = 8 electroweak S parameter we
also observe behavior similar to the 6-flavor case, with a

reduction in S setting in at the smallest masses we can
reliably access on 323×64 lattices. This reduction in the
S parameter is associated with increased parity doubling
between the lightest vector and axial-vector states.

Given the recent discovery of a light Higgs particle,
the most pressing task for future lattice studies of can-
didate walking technicolor theories is to investigate the
flavor-singlet scalar spectrum. It remains an open ques-
tion whether strongly-coupled gauge theories produce a
scalar state with the properties of the 125 GeV Higgs.
Although such studies are difficult and computationally
expensive, these efforts are now underway for the 8-flavor
SU(3) theory, with promising initial results reported by
the LatKMI Collaboration [28]. The LatKMI investiga-
tions using staggered fermions motivate complementary
studies with domain wall fermions, but the larger cost
of DWF make these calculations even more challenging.
The 8-flavor DWF ensembles we have generated do not
appear to possess sufficient statistics to permit robust
glueball analyses, but we are currently exploring fermion-
line-disconnected DWF calculations, to judge whether
such flavor-singlet scalar studies are practical.
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Appendix: Thermalization, auto-correlations and
topological charge evolution

In this appendix we provide additional information
about the thermalization and auto-correlations of our lat-
tice ensembles, which motivate our use of 50-trajectory
jackknife blocks and the thermalization cuts listed in Ta-
ble I. We set the thermalization cuts in Table I by mon-
itoring spectral results as functions of the thermaliza-
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FIG. 12. Parity doubling in the vector and axial-vector channels: MA/MV (left) and FV /FA (right) plotted against M2
P /M

2
V 0

for Nf = 2, 6 and 8. Lines connect points to guide the eye. Our results for Nf = 2 and 6 are from Ref. [13].

tion cut. Representative results for MP and MV on the
disordered-start 323×64 mf = 0.015 ensemble are shown
in Figure 13. As the thermalization cut increases the
spectral quantities initially evolve, but their central val-
ues reach plateaus once the system has thermalized. (The
error bars continue to grow as the amount of remaining
data decreases, and we attribute the jump in the final
MP point to the limited data; in these plots we use jack-
knife blocks of 20 MD trajectories.) For this ensemble
the results reach plateaus once the thermalization cut is
around 500 MD trajectories.

A complementary way to estimate thermalization is to
inspect time-series plots of appropriate observables. The
chiral condensate ψψ is often used for this purpose. In
Figs. 14 and 16 for our 323×64 and 163×32 ensembles,
respectively, we see that ψψ appears to thermalize quite
rapidly, within tens of MD trajectories for L = 16, and a
couple hundred MD trajectories for L = 32. Subsequent
fluctuations in ψψ are too small to be readily visible in
these figures.

An alternative observable, which we have found to be
more sensitive to thermalization than is ψψ [29], is the
quantity t2E(t) measured after long Wilson flow times t.
The Wilson flow is a continuous and reversible smoothing
operation, integrated to cover a radius ∼

√
8t (cf. [60] for

a recent review). This smoothing provides long-distance
quantities that are not too noisy, and are relatively inex-
pensive to compute. After running the Wilson flow for
some flow time t, the energy E and topological charge Q
are simply

E = −1

2
ReTr [FµνF

µν ]

Q =
1

32π2
ReTr [εµνρσF

µνF ρσ] ,

(24)

both of which we determine from the clover-leaf defini-
tion of Fµν . Figs. 15 and 16 present time-series plots for
t2E(t) for our 323×64 and 163×32 ensembles, respec-

tively, which show more gradual thermalization than do
those for ψψ. The thermalization cuts we would estimate
from this Wilson flow observable are generally consistent
with those in Table I that we set by monitoring spectral
quantities.

The fluctuations of t2E(t) following thermalization are
also more significant than the fluctuations of ψψ, which
could allow us to estimate auto-correlation times. That
said, we choose the size of our jackknife blocks from the
common approach of measuring masses as functions of
the block size. Figure 17 presents representative results
for MP and MV on the ordered-start 323×64 mf = 0.015
ensemble. As the block size increases, auto-correlations
are removed and so the statistical uncertainties increase
towards their true values. For this ensemble the size of
the error bars appears to stabilize around block sizes of
roughly 100 MD trajectories. Due to the limited amount
of data available for some of our other 323×64 ensembles,
we are not able to use jackknife blocks larger than 50
MD trajectories. Figure 17 indicates the extent to which
our statistical uncertainties may be underestimated as a
consequence.

The global topological charge Q is well known to
exhibit particularly severe auto-correlations, especially
as the lattice spacing decreases [61, 62] or Nf in-
creases [12, 30]. Conveniently, the Wilson flow measure-
ments of t2E(t) discussed above also determine the topo-
logical charge, as shown in Eq. (24). By considering long
flow times t, we obtain nearly-integer values for Q on our
323×64 lattices, which we plot in Figure 18. Clearly,
none of our ensembles exhibit the gaussian topological
charge distribution around Q = 0 that we desire. How-
ever, in contrast to the 10-flavor case where the topolog-
ical charge is almost entirely frozen [30], we observe fre-
quent tunneling, especially for larger mf . In the future,
it would be interesting to determine topological suscep-
tibilities and estimate auto-correlation times from these
topological charge time series, following the maximum-
likelihood approach proposed by Ref. [63].
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FIG. 13. MP (left) and MV (right) as functions of the thermalization cut for the disordered-start 323×64 mf = 0.015 ensemble.
The masses reach plateaus for a thermalization cut around 500 MD trajectories.

FIG. 14. Time-series plots of the chiral condensate ψψ for 323×64 ensembles. Left: mf = 0.01 and 0.015 including both the
ordered and disordered starts. Right: mf = 0.02, 0.025 and 0.03.
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